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I. INTRODUCTION

The present investigation deals with a plasma-sprayed thermal barrier coating

(TBC) intended for high temperature applications to advanced gas turbine blades.

Typically, this type of coating syst_n consists of a zirconia-yttria ceramic layer
with a nickel-chromiun-aluninum bond coat on a superalloy substrate. The problem

on hand is a complex one due to the fact that bond coat oxidation and thermal
mismatch occur in the TBC, as reported in reference I. Cracking in the TBC has

also been experimentally illustrated in the same reference.

The purpose of this investigation is to help achieve a clearer understanding
of the mechanical behavior of the TBC. The near-term objective is to study the

stress states in a model thermal barrier coating as it cools down in air.

In this investigation, the powerful finite element method has been utilized

to model a coated cylindrical specimen. Four successively refined finite element

models have been developed. Some results obtained using the first t_m models have

been reported in references 2, 3 and 4.

The present paper discusses progress in the current year. The major

accomplishnent is the successful development of an elastic TBC finite element
model known as TBCG with interface geometry between the ceramic layer and the bond

coat. An equally important milestone is the near-completion of the
new elastic-plastic TBC finite element model called TBCGEP which yielded initial

results. Representative results are presented in figures ii through 22.

2. EXPERIMENTAL FINDINGS OF FRACI_ OF COATINGS

A number of researchers have reported their TBC work since the late 1970 's.

:._.ostpapers and reports dealt with testing of coated specimen ranging from cylin-

irical coupons to full-size turbine blades. Significant progress has been made,
l_o_¢ever,the central question of coating failure mechanism(s) has yet to be

conclusively ascertained.

Of particular interest to the present investigation is the experimental work

on TBC reported in reference I. In that work, coated superalloy specimens were
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tested. The uncoated specimen which is illustrated in figure I, had a radius of

0.65 cm. and a length of 7.60 cm. The specimens were plasma-sprayed in air with
the zirconia-yttria (ZrO2-8wt.% Y203) on a nickel-chromi_n-aluminu_-zirconiu_ bond

coat. Coated specimens were next exposed to the combustion gases of a burner rig
for varying periods of time before cooling took place. _st specimens went
through many thermal cycles.

In reference I, it was found that the coatings of all specimens tested in the

air at temperatures high enough permitting bond coat oxidation eventually failed

in spalling. The spalling which was visible had been examined by scarming elec-
tron microscopy (SEN) to be preceded by ceramic coating delamination. The TBC

specimens invariably failed within the ceramic layer just above the bond coat on

cooling in air from high temperatures. The same photomicrographs also showed the
rough interface between the ceramic layer and the bond coat that contained oxides.

>_re oxides were found in the region adjacent to the interface than the region
away from the interface. Some interfaces were approximately sinusoidal with

peak-to-peak and peak-to-valley dimensions up to I00 micrometers (_m).

These tests illustrated some TBC failure modes, and have led to the present
analytical modeling effort.

3. FINIa_E EIINENr MDDELING OF A CYLINDRICAL THERMAL BARRIER COATING

To determine the quantitative nature of the stress (and strain) states

associated with a TBC specimen, a general-purpose finite el_mmnt program has been
employed to model a cylindrical test specimen which is similar to the ones

reported in reference i. The modeling concept is illustrated in figure I.

The test specimen is sufficiently long, as compared to its radius, that the

problem can be approximated by a t_o-dimensional generalized plane-strain case.

This approximation implies, as in the classical theory of elasticity, uniform

strain in the axial (or z-) direction. The chief advantage of this approximation

is to help keep the amount of computation to a manageable level on a super
computer.

As shown in figure i, a sinusoidal interface between the ceramic layer and
the bond coat is introduced with a period of approximately 50 _m (0.0020 in.) and

an amplitude of approximately 15 ;m (0.0006 in.). This interface is much

smoother than the one (50 _m) used for the results reported earlier in
reference 4.

The three materials ccmprising the substrate, the bond coat, and the ceramic

are assumed to be homogeneous and isotropic and elastic for the TBCG model. The

bond material in the latest model, TBCGEP, however, is assumed to be elastic-

plastic, following the classical theory of plasticity with yon Mises' criterion

for yielding or the onset of plastic flow. Strain hardening which has been built

into the program, is controlled by the slope of the stress-strain curve. Up to
four line segments can be used to specify the stress-strain curve associated with
_he bond material.

Each material, therefore, possesses its own temperature-dependent parameters,

;uch as Young's modulus (E), Poisson's ratio (_), and thermal e_cpansion coeffi-

cient (a). In addition, the bond material has a plasticity parameter which
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controls the yielding process (YPI). Finally, the bond material is capable of
simulating oxidation effects in the manner discussed in reference 3 and 4, and
elsewhere in this paper.

An overview of the more recent (third) model known as TBCGis given in
figures 2 to 6. The model contains 1316nodal points and 2140 elements, both

triangular and quadrilateral. Particular attention has been given to the region

in the vicinity of the model of fundamental interest in the discretization

process. Most el_nents in the refined region are sized at several micrometers to
insure fine resolution. Details of the refined region are shown in figures 7 to

I0, where oxidized elements are shown in bold lines along the sinusoidal
interface.

The actual modeling is done with the use of a general purpose computer

program known as MARC (ref. 5) which is operational on a super computer (CRAY-I)
at NASA Lewis Research Center.

The boundary conditions applied to the model are fully compatible with those

normally required in the theory of continuL_n mechanics. M_re specifically, only

radial displacements are allo%ed to take place along radial lines, OA and OB, in

figures 2 and 3. Line AB is free to displace. Point 0 which represents the
center of the unit slice or the z-axis of the cylindrical specimen, is fixed.

Model TBCGEP is _identically the same as TBCG, with the exception of

plasticity capability in the bond coat.

To simplify the complex problem on hand, only a uniform temperature field is

imposed on the model specimen. The steady-state solution sought here will greatly

aid in the interpretation of computational results.

4. STRESS STATES CAUSED BY THERMAL EXPANSION MISMATCH

With the use of the TBCG computer program, a problem sinmlating a cylindrical

TBC specimen experiencing a temperature drop of 100°C from an assumed stress-free
state at 700°C has been solved. This problem is referred to as Case B-2 T2nich is

identically the same as Case A-2 reported in reference 3 with only one difference.

In the present case, a smoother ceramic-bond interface with an amplitude of 15 um

is specified. The corresponding magnitude for Case A-2 is 50 um.

:_terial properties used for the present case are given in Table I. Selected
results of Case B-2 are shown in figures Ii through 13. The strains are of

reasonable size and distribution, being analogous to the stresses. They are not

presented here to keep the length of this paper to a proper limit.

From figure ii, it can be seen that stresses in the x-direction (or radial

stresses) in the vicinity of the sine peak (asperity) are rather high and are

tensile. Such high tensile stresses could easily initiate cracking at the asperi-

ties as the i_BC specimen cools down. Note these stresses correspond to a tempera-

_re drop of 100°C. An additional temperature drop would produce proportionately
increased stresses. Thus, there should be little doubt that micro-cracking could

be initiated at the asperities at some point during the ccoling process. This is

_specially convincing when one recalls that the occurrence of such
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cracking may contribute to the acoustic emission observed as TBC specimens cool
down (ref. 6).

The peak tensile radial stresses in figure Ii are only 55 percent as large as
those found in Case A-2. The same is also true of the compressive radial stresses

between the two cases. This reduction in stress buildup can be most logically
nttributed to the changing geometry between the two cases. A smoother interface

causes less stress concentrations than a rougher interface.

The stresses in the y-direction (or hoop stresses), as shown in figure 12,

are fairly uniform throughout the thickness of the ceramic layer. They are

compressive, as expected. These stresses are only slightly smaller in magnitude
than corresponding values for Case A-2o The reduction is in the range of about

ten percent. The same is true of shearing stresses for both Cases B-2 and A-2.

Again, the shearing stress maximizes near the interface where failure is observed
in reference I. At present, reliable data on allowable stresses from this ceramic

mmterial is lacking. It is therefore inappropriate to make any conclusive remarks

about these t_D stresses, although the shearing stress is of significant magnitude
(+ 8 MPa).

5. STRESS STATES ASSOCIATED WITH BOND-COAT OXIDATION

.Reference i reported that bond coat oxidation was seen to grc_ with thermal
cycles -_en the test _ conducted in the air. The failure of TBC was correlated

with this oxidation of the bond coat. The oxide layer appeared to grow thicker

with each exposure to the air at high temperature. The net effect is equivalent

to inserting an extra oxide layer between the ceramic layer and the remaining

unoxidized bond material. The oxide is largely alumina which is a very hard and
strong material. As such, the stress state in the ceramic (and the bond) is

expected to be severely impacted by the expanding oxide layer.

As a first attempt to model the effects of bond coat oxidation, the single

layer of finite elements bordering on the sinusoidal interface have been assigned
the properties of alumina. These are given in Table i.

In this case, oxide growth has been represented by giving these el_nents an
artificially large thermal e_xpansion coefficient given by

=Gx_
a

-_here G is a growth factor, and _ is the usual thermal _xpansion coefficient of
the oxide material (7.79 x 10-6). Proper choice of G was discussed in
reference 3.

For the present case, B-10, the growth factor, G, was set equal to -i000. A

_z_perature drop of only 0.1°C was utilized to minimize thermal expansion mismatch

stresses. This yielded a very modest expansion of 0.08% in the oxide layer. The

resultLng stresses due to this oxidation-like process are shown in figures 14 to
16.

_he stresses obtained for Case B-10 are, in general, the reverse of those

obtaLned for Case B-2. In figure 14, stresses in the x-direction are compressive
nea_- the peak of the asperity and tensile above the valley. Stresses in the
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y-direction, as shown in figure 15, are positive near the peak of the asperi.ty
while still being negative elsewhere. Shearing stresses in figure 16, are, _n

general, in the opposite direction (opposite sign).

The magnitude of the above stresses are very large considering that only a

very modest expansion of the oxide has been modeled. In particular, the size of
tensile radial stresses in the ceramic above the valley is noteworthy. They are

in the range of 6 to i0 MPa. Thus, the stress state due to oxidation can be

expected to have a profound influence on the coating failure mechanism.

The present case is identically the sm_e as Case A-10 reported in reference 3

with the only exception of interface geometry, the present case involves a
smoother interface than Case A-10. As expected, radial stresses in case B-10 are

approximately 15 percent lower than those of Case A-10. The overall pattern for
radial stresses for Case B-10 is tb_ sm_e as that for Case A-10. The same can be

said of patterns of hoop and shearing stresses between these t_ cases.

6. STRESS STATES RESULTING FRf_ THERMAL EXPANSION MISMATCH AND PRECRACKING

As radial stresses of large magnitude occur in the ceramic layer at the peak

of the asperity accompanied by in-plane compressive stresses, such as shown in

figures ii and 12, cracking in the tangential (or hoop) direction may very _ell

take place. Once cracks occur, the local stress states will be altered. The
results of the TBCG calculation for a pre-selected, simulated crack are shown in

figures 17 through 19. This probl_n is labeled Case B-14. The stresses corres-

pond to a t_perature drop of 100°C. The radial stresses in figure 17 have been
redistributed in the presence of the crack. High tensile radial stresses continue

to exist near crack tips, possibly causing additional circumferential cracking.

Therefore, crack propagation is entirely expected. However, the magnitudes of
such radial tensile stresses are expected to become progressively lower as the

crack continues to grow in the circumferential direction. It is also noted that

some compressive radial stresses do exist above the valley. Such compression is

thought to be able to arrest (or at least slow down) the continued cracking in the
_bsence of other forces (such as those resulting from oxidation) which promote

crack growth. This stress phenomenon helps explain the previous observation made
in reference I, that TBC specimens which did not experience oxidation had a long

thermal cycle life (e.g. in excess of I0,000 cycles).

Radial stresses at a considerable distance away from the pre-cracking are

left almost unchanged from that of Case B-2, as expected. The same is also true

with stresses in the y-direction and shearing stresses.

Results of a similar problem, Case A-14, were presented in reference 4. A

comparison between the two sets of results indicates that stress patterns in both
cases are very mmch similar, with the present case yielding a reduction of

approximately I0 percent in stresses due to the presence of a smoother
ceramic-bond interface. This observation is both logical and consistent with t_

_pther comparisons made earlier in this paper (in Sections 4 and 5).
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7. PRELIMINARY RF6%_TS OF PLASTICITY IN THE BOND COAT

Initial operational capability of the newest computer program called TBOGEP

was achieved in July 1986. This program has been designed to model the

cylindrical TBC specimen with an elastic-plastic bond coat. By choice, the
ceramic layer and the superalloy substrate remain elastic. Other than this

plastic material property, all other features of TBCGEP are identically the same
as those of the computer program TBCG.

Results of a preliminary elastic-plastic TBC run known as Case EP-2, are

presented in figures 20 through 22. The problem parameters for the case under

consideration are given in Table i. The data used are nearly identical to those

of Case B-2. However, a temperature drop of 0.1°C was utilized in this case on a

trial basis. (This will also pave the way for successive calculations to

accommodate plastic flow/strain hardening.) At the same time, the plasticity
yield parameter (YPI) was arbitrarily set at 69 MPa for lack of proper data for

the bond coat yielding behavior. (An experimental effort is underway to determine

plastic behavior of a related bond coat material. Results from this particular

testing are expected to be used for future TBCGEP runs).

The elastic-plastic results presented in figures 20 to 22 are necessarily
prelimirmry in nature. The radial stresses in the bond coat are modest in magni-

tude. It is premature to draw any specific conclusions from these very limited

numerical results of Case EP-2. However, the radial stress pattern in the

ceramic, as shown in figure 20, is seen as somewhat similar to that of Case B-2,

figure ii. The magnitudes of the elastic-plastic radial stresses in the ceramic
are only a small fraction of that of the elastic case. Such low level of stresses

could nevertheless be increased, or decreased, by the proper selection of the YPI

value for the bond coat material. As discussed in reference 7, it is generally

understood that plasticity leads to the loss of energy in a loaded body, resulting
in a somewhat lowered state of stresses than a similar elastic body subjected to

the same loads and boundary conditions. In addition, the size of temperature drop
will influence the state of stress as well. Thus, these radial stresses in the

ceramic are presented here merely as an illustration of the plausible pattern.
Considerable effort will be made to quantitatively interpret the meaning of
several elastic-plastic runs in the future.

The same can also be said about the states of stresses in the y-direction and

of the shearing stresses. Nonetheless, the low state of stress in the y-direction

in the bond coat near the peak of asperity is noteworthy. Such a pattern is in

clear contrast to that of the stress in the x-direction in the same region.

8. A PRELIMINARY MECHANISM FOR OXIDATION-INDUCED COATING FAILURE

In reference 3, a preliminary mechanism for oxidation-induced coating failure

_as proposed, as shown in figure 23. The results presented in preceding sections

!end additional credibility to that proposed mechanism.

The proposed TBC failure mechanism is largely based on the elastic stress

patterns. The actual mechanism would most likely be further complicated by the

effects of inelasticity and anisotropy. Nevertheless, it appears that the current

computer modeling effort has begun to provide important insights into the

the_chanical behavior of the thermal barrier coatings. Additional
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elastic-plastic cc_puter analyses planned for the next eight months will certainly
contribute to tb_ evaluation of the validity of the proposed mechanism.

9. CONCI/DING RD_R_

From the preceding discussions in Sections 4 through 6, it is not difficult

to suggest that a rough ceramic-bond interface introduces states of higher

stresses, as expected. This is a tradeoff the designer will have to deal with.

The capability to generate a reasonably useful set of data pertaining to the

cylindrical TBC specimen now exists, along with a limited anm_t of data

(presented here and in references 2, 3 and 4.) These are now available for use by

designers or researchers who are interested in TBC failure by either oxidation or
fracture caused stress intensities.

With the attairment of initial operational capability of the latest (and

fourth) computer program called TBCGEP, several computer runs will be made to

calculate stresses and strains in the cylindrical TBC specimen with an elastic-

plastic bond coat capable of strain hardening following yielding. Experimental

data on the strength and plastic behavior of the bond material, as _ell as the

ceramic, would be of utmost usefulness to this modeling effort. The ntmerical

data so generated by the TBCGEP model should be illustrative of the elastic-

plastic behavior of the thermal barrier coating in a comprehensive way hitherto-

before considered impossible. Such data could, in turn, guide the experimentalist

and the designer in their work on the TBC.

The approach or methodology developed in this investigation is applicable to

analyzing any TBC specimens or engine parts protected by related coatings. The

latest program, the TBCGEP, can be modified to deal with more complex geometry,

where necessary. The only limitation at present time is the computing power.
Nevertheless, it is believed that a reasonable modeling effort of a coated turbine

blade can now be attempted.

I.

2,
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PARAMETERS

.Young's
_bdulus (MPa)

Subs trate

Bond Coat

Oxide Layer

Ceramic

Poisson' s Ratio

Substrate

Bond Coat

Oxide Layer

Ceramic

Coefficient of

Thermal Expansion

Substrate

Bond Coat

Oxide Layer

Ceramic

Cracks

Temperature Drop

TABLE 1 MATERIAL AND OTHER PARAMETERS

Case B-2 Case B-10 Case B-14 Case EP-2

0.1758XI06 0.1758XI06 0.1758XI06 0.1758XI06

0.1379XI06 0.1379XI06 0.1379XI06 0.1379XI06

--- 0.3448X106 ......

0.0276XI06 0.0276XI06 0.0276XI06 0.0276X106

/C)

0.25 0.25 0.25 0.25

0.27 0.27 0.27 0.27

--- 0.32 ......

0.25 0.25 0.25 0.25

13.9 IXI0-6 13.91XI0- 6 13.91XI0- 6 13.91XI0 -6

15.16XI0-6 15.16XI0 -6 15.16XI0-6 15.16XI0-6

.... 7.79XI0- 3 ......

10.01X10 -6 10.01X10 -6 10.01X10 -6 10.01XI0 -6

NO NO YES NO

-100°C -0. IoC -100°C -0. l°C
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Figure 1. CYLINDRICAL TBC TEST SPECIMEN
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Figure 2. THE TBCG FINITE ELEMENT MODEL
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REGION(s) BEHAVIOR

2-5 ceramic

6-8 bond coat or- - ,_\

oxidized So_.6 _°s_'

Origin

Node 1316 Interface Finite elements
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A
Node 5

i

R = 8.858mm

Figure 3. OVERVIEW OF THE ADVANCED TBCG MODEL
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Figure 4. TBCG MODEL (Part 1)
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Figure 5. TBCG MODEL (Part 2)
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Figure 6. TBCG MODEL (Part 3)
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Case B,2

Parl: 2C

Unit: MPa
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-10 _ " -4 "2 _ O_

2

I0

-2 0

-8 -6 -4

Ceramic

Figure 11. STRESS IN X-DIRECTION DUE TO THERMAL EXPANSION MISMATCH

Case B-2

Part: 2C

Unit: MPa

Bond G -16 Ceramic

Figure 12. STRESS IN Y.DIRECTION DUE TO THERMAL EXPANSION MISMATCH
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4 2

Case B-2

Part: 2C

Unit: MPa

Bond Ceramic

Figure 13. SHEARING STRESS DUE TO THERMAL EXPANSION MISMATCH

\
-8 -6 -4 -2 Ceramic

Figure 14. STRESS IN X-DIRECTION DUE TO OXIDATION
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Figure 15. STRESS IN Y-DIRECTION DUE TO OXIDATION

Ceramic

Case B-IO

Part:. 2C

Unit: MPa
Bond

Ceramic

Figure 16. SHEARING STRESS DUE TO OXIDATION
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Ceramic

Figure 17. STRESS IN X-DIRECTION DUE TO THERMAL EXPANSION MISMATCH WITH PRECRACKING

-14

-12
-10

-10

Case B-14

Part: 2C

Unit: MPa

-16 to -22

Bond

-16to-22

-18 -16 Ceramic

/
-12

-10

Figure 18. STRESS IN Y-DIRECTION DUE TO THERMAL EXPANSION MISMATCH WITH PRECRACKING
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Case B-14

Pad: 2C

Unit MPa

4to 6

Bond Ceramic

-4 to -6

Figure 19. SHEARING STRESS DUE TO THERMAL EXPANSION MISMATCH WITH PRECRACKING

Case EP-2

Pad: 2C

Unit: MPa Bond

2

Ceramic

Figure 20. ELASTIC-PLASTIC STRESS IN X.DtRECTION DUE TO THERMAL EXPANSION MISMATCH
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Case EP-2 OF _",3OR _,;'_,_'_-'

Ceramic

Figure 21. ELASTIC-PLASTIC STRESS IN Y-DIRECTION DUE TO THERMAL EXPANSION MISMATCH

Case EP-2

Part: 2C
Bond

Unit: MPa
Ceramic

Figure 22. ELASTIC-PLASTIC SHEARING STRESS DUE TO THERMAL EXPANSION MISMATCH
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